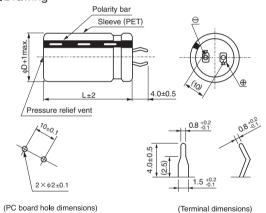


Snap-in Terminal Type

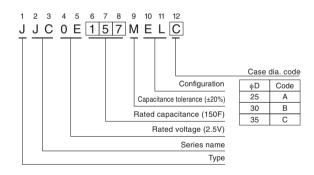

- Excellent in voltage holding property.
- Suitable for quick charge and discharge.
- Wide temperature range (- 25°C to + 60°C).
- Compliant to the RoHS directive (2011/65/EU,(EU)2015/863).

Products which are scheduled to be discontinued. Not recommended for new designs.

■ Specifications

Item	Performance Characteristics							
Category Temperature Range	- 25 to +60°C							
Rated Voltage Range	2.5V							
Rated Capacitance Range	56 to 200F See Note							
Capacitance Tolerance	±20% (20°C)							
Stability at Low Temperature	Capacitance (-25°C) / Capacitance (+20°C) ×100 ≥ 70% ESR (-25°C) / ESR (+20°C) ≤ 7							
ESR, DCR*	Refer to the table below (20°C). *DC internal resistance							
Endurance	The specifications listed at right shall be met when the capacitors are restored to 20°C after the rated voltage is applied for 2000 hours at 60°C.	Capacitance change ESR	Within ±30% of the initial capacitance value 300% or less than the initial specified value					
Shelf Life	The specifications listed at right shall be met when the capacitors are restored to 20°C after storing the capacitors under no load for 2000 hours at 60°C.	Capacitance change ESR	Within ±30% of the initial capacitance value 300% or less than the initial specified value					
Humidity Endurance	The specifications listed at right shall be met when the capacitors are restored to 20°C after the rated voltage is applied for 500 hours at 40°C 90%RH.	Capacitance change ESR	Within ±30% of the initial capacitance value 300% or less than the initial specified value					
Marking	Printed with white color letter on black sleeve.							

Drawing



Dimensions

Rated Voltage		Cap.	ESR(mΩ)	DCR*	Case size $\phi D \times L \text{ (mm)}$		
(code)	Cap. code		(at 1kHz)	Typical (mΩ)	φ 25 (A)	φ30 (B)	φ 35 (C)
2.5V (0E)	56	566	70	50	25 × 40	30×30	
	68	686	60	45			35×30
	82	826	60	35	25×50	30×40	
	100	107	50	30			35×35
	120	127	50	25		30×50	35×40
	150	157	40	22			35×50
	200	207	30	16			35×50

 $\ensuremath{\text{\#}}$ The listed DCR value is typical and therefore not a guaranteed value.

Type numbering system (Example: 2.5V 150F)

Note

The capacitance calculated from discharge time (ΔT) with constant current (i) after 30minuite charge with rated voltage (2.5V).

The discharge current (i) is 0.01 \times rated capacitance (F). The discharge time ($\Delta T)$ measured between 2V and 1V with constant current.

The capacitance calculated bellow.

Capacitance (F) = $i \times \Delta T$